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Abstract
We study the Hubbard model on the triangular lattice for general fillings by
means of the slave-boson technique. In particular, we consider the stability
regions of the paramagnetic, antiferromagnetic and linearly polarized spin-
density-wave phases that are present at half-filling. The model presents a large
anisotropy under particle or hole doping of the half-filled band, a consequence
of the non-bipartite nature of the lattice. We also compute the helicity modulus
in the antiferromagnetic phase, which characterizes the stiffness of the magnetic
order.

The Hubbard model [1], the paradigm of the highly correlated electron systems, has been
extensively studied in the last few years mainly because of its possible connections with the
physics of the CuO2 planes in high-Tc ceramic compounds. Because of this motivation, most
authors have considered the behaviour of this model on the square lattice, particularly in the
limit of large on-site Coulomb repulsion U . At half-filling this system is an antiferromagnetic
insulator for all values of U , because of the perfect nesting of the non-interacting Fermi
surface. Interesting features in the ground-state magnetic properties, like incommensurate
spiral structures, appear only away from half-filling [2–4].

The Hubbard model for geometries other than the square lattice has received much less
attention. However, its behaviour becomes more interesting when one considers, for instance,
non-bipartite lattices. In particular, it has been shown [5–7] that on the triangular lattice even at
half-filling it has a very rich ground-state structure, including a paramagnetic phase, different
magnetic long-range orders, and a metal–insulator transition. All this physics has its origin in
the combined effects of the large electron correlation and the magnetic frustration characteristic
of the lattice.

In this work we consider the Hubbard model on the triangular lattice:

H = −t
∑

i,µ,σ

c
†
iσ ci+µ,σ + U

∑

i

ni↑ni↓ (1)

where i indicates lattice sites and the µs are the vectors pointing to the six nearest neighbours of
a given site. This model has been studied in [5–7] using the Hartree–Fock (HF) approximation,
and we have previously considered [8] its phase diagram at half-filling (δ ≡ 1 − n = 0) by
means of the slave-boson (SB) mean-field approach. In this work we extend our calculations
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away from half-filling, to explore the behaviour of the model in the absence of particle–hole
symmetry due to the non-bipartite nature of the triangular lattice. Even though this study has
already been performed using the Hartree–Fock approximation, the differences between the
HF and SB results found for n = 1 [8] make the investigation worth pursuing. On the other
hand, as shown in [9] for the Hubbard model on the square lattice, the SB technique greatly
improves on HF results, especially away from half-filling.

In particular, we will consider the stability regions in the (δ, U) parameter space of the
three phases found to be stable at half-filling in [8]: the paramagnetic (P), three-sublattice
antiferromagnetic (AF), and linearly polarized spin-density-wave (LSDW) phases. We will
not investigate the possibility of having spiral phases, which are suppressed at δ = 0 with
respect to the HF predictions by the lowering of the paramagnetic energy in the SB approach.
We will also disregard, for the time being, the interesting questions of Nagaoka (ferromagnetic)
instabilities and phase separation for large U [7], and the existence of vortex–lattice magnetic
structures for particular fillings found in unrestricted HF calculations [10].

We use the rotationally invariant SB approach as developed in [11]. Although this
formulation is not strictly necessary at the mean-field level, it is convenient for treating non-
collinear phases. Following the notation in [8], in the P and AF phases the pseudofermion
dispersion relations are given by

εkσ = (Ak↑ + Ak↓)

2
− σ

√(
Ak↑ − Ak↓

2

)2

+ B2
k (σ = ±). (2)

We have used the definitions

Akσ = tα2
σ γ c

k + λ
(2)
0 + σλ

(2)
3 Bk = tγ s

kα↑α↓ (3)

with

γ c
k = 1

2

∑

µ,σ

cos

(
k + σ

Q

2

)
· µ γ s

k = 1

2

∑

µ,σ

σ cos

(
k + σ

Q

2

)
· µ. (4)

In the P and AF phases the magnetic wavevector Q = 0, (4π/3, 0) respectively, but (2)–(4)
hold for an arbitrary spiral phase. The ασ s are the Kotliar–Ruckenstein [12] ad hoc factors

ασ = 1√
1 − d2 − p2

σ

(epσ + dp−σ )
1√

1 − e2 − p2−σ

which renormalize the bandwidth to ensure the correct U = 0 limit. Here e2, p2
↑, p2

↓, and
d2 are, respectively, the probabilities of having a hole, a single electron (polarized parallel or
antiparallel to the local z-axis), and double occupancy. Finally, in (3) λ

(2)
0 and λ

(2)
3 are the

Lagrange multipliers that impose the equivalence in computing the mean particle and spin
densities using either these probabilities or the pseudofermion densities.

Then, the ground-state energy of model (1) in the SB approach becomes

E0 = H0 +
∑

k,σ

εkσ nkσ (5)

where the nkσ s are the pseudofermion occupation numbers. The constant

H0 = Ud2 − λ(1)(e2 + p2
↑ + p2

↓ + d2 − 1) + λ
(2)
0 (p2

↑ + p2
↓ + 2d2) + λ

(2)
3 (p2

↑ − p2
↓)

takes into account the Coulomb energy (the first term in the rhs) and includes the contributions
of the averaged constraints. Notice the term with the λ(1)-multiplier that restricts, on average,
the bosonic sector of state space to the physical size (sites probabilities must add up to one).
The minimization of (5) with respect to the Lagrange multipliers and site probabilities produces
seven consistency equations that are solved numerically. Like in [8], we use an iterative method
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that requires, at every step, adjusting the chemical potential µ to fix the particle density to
n = 1 − δ. To allow a precise determination of the Fermi surface, in the P phase we solve the
problem using an 800 × 800 grid to cover the Brillouin zone (this large number of points is
required to make the iterative procedure a stable minimization algorithm). In the gapped AF
phase we used the Gauss–Legendre integration method with 120 × 120 points. We checked
that these approximations produce no perceptible error in the curves shown below. Notice that
for Q = 0 one could have used the density of states obtained in [7] to evaluate the k-space
integrals.

Figure 1. Stability regions in the (δ, U) parameter space of the paramagnetic (P), antiferromagnetic
(AF), and linear spin-density-wave (LSDW) phases of the Hubbard model on the triangular lattice.

In figure 1 we present the result of the numerical procedure described above. This figure
shows a large asymmetry in the stability of the AF phase under particle or hole doping from
half-filling. For instance, for U/t = 9 the AF order is destroyed by ∼4% of additional particles,
while it takes ∼22% of holes to produce the same effect. This asymmetric behaviour is even
more pronounced for larger values of U . In figure 2 we give the dispersion relations (2) in the
AF phase for U/t = 9 and different δ-values, along the following path in the Brillouin zone:

� = (0, 0) → X = (π, π/
√

3) → W = (2π/3, 2π/
√

3) → Z = (0, 2π/
√

3). (6)

This figure shows the behaviour of the bands at half-filling and for doping values that are
intermediate and close to the P phase transition. As can be seen, there is a sizable band
renormalization and a diminishing gap for increasing doping with respect to half-filling. At
the point where the P phase becomes stable there is still a finite local magnetization, which
indicates that the predicted AF–P transition is of first order. Moreover, the itinerant magnetic
state rapidly loses energy with the disordered state when the spin-down quasiparticle excitations
begin to be populated.

At half-filling there is a commensurate LSDW state [6], which competes with the P and AF
phases in a small range 6.9 � U/t � 7.8. This state becomes favourable against the AF order
because of the zigzagging ferromagnetic pathways that it presents (see figure 3), which lower
the kinetic energy to the point of overcoming the loss in magnetic energy. Conversely, it is
stable against the disordered state because of its gain in magnetic energy. Studying this order
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Figure 2. Quasiparticle energy bands along the �–X–W–Z path in the Brillouin zone (given in (6)
in the main text), for U/t = 9 and different fillings.

Figure 3. The magnetization pattern in the commensurate LSDW state. The dashed line shows
the four-site unit cell. Notice the zigzagging ferromagnetic pathways.

away from half-filling requires considerable numerical effort, since the dispersion relations
cannot be obtained analytically because of the enlargement of the magnetic cell. Like in our
previous study [8] for δ = 0, we solved the corresponding consistency equations on a grid
of 200 × 200 points covering the Brillouin zone of the new decorated rectangular lattice. As
shown in figure 1, the LSDW phase is stable in a small region, with a pronounced asymmetric
shape.
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Figure 4. The helicity modulus ρs at half-filling in the AF phase. Full and dashed lines are the SB
and HF results respectively.

We have also computed the helicity modulus or spin stiffness in the AF phase at half-filling:

ρs = lim
q→0

E0(q) − E0(0)
1
2q2

with E0(q) obtained by taking Q = (4π/3 − q, 0) in (4). This important quantity in the
study of quantum systems measures the stiffness of the ordered state under a twist in the order
parameter. In this particular case it gives the rigidity of the AF state to small changes in the
spiral wavevector. By following the calculations in [9] we obtained the result shown in figure
4. We also present in this figure the corresponding result obtained using the HF approximation.
As concluded in [9], in both cases the helicity modulus is essentially determined by the average
kinetic energy. However, by comparison with Monte Carlo results, Denteneer and Blaauboer
showed that for the square lattice the SB results improve on those of the HF approximation.
We believe that this should also happen on the triangular lattice. In any case, like on the square
lattice, the HF and SB predictions for ρs do not differ much.

In conclusion, we have studied the Hubbard model on the triangular lattice for general
fillings by means of the SB technique. Our results show a large asymmetry in the behaviour
of the system around half-filling under particle or hole doping, a consequence of the non-
bipartite nature of the lattice. In particular, for t > 0 in (1), particles are much more efficient
than holes in destroying the AF order. Since we are not considering boson fluctuations, our
approach is expected to overestimate the robustness of the AF state. The relatively small particle
doping required to destroy this order makes it tempting to speculate that antiferromagnetism
could be a sort of critical state at half-filling, with perhaps a ground-state structure closer to
Anderson’s resonant-valence-bond ideas for very small δ < 0. With hole doping, however,
the antiferromagnetic order seems to be fairly robust. The SB approach predicts a first-order
transition between the AF and P phases, while the LSDW phase remains the stable ground-state
structure in a small parameter region. We have also computed the helicity modulus (or spin
stiffness) of the system at half-filling in the AF phase, which, like for the square lattice, does
not differ much from the HF prediction.
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